Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

UCL Depthmap 7: Data Analysis

Alasdair Turner

Version 7.12.00c

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Outline

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = 釣�?

Although Depthmap is primarily a graph analysis tool, it does allow you to investigate data that you produce.

This tutorial will show you how to look at summary statistics about attributes, compare attributes with each other through scatter plots, and compare attributes to observation data that you have collated. If you want to do more detailed data analysis than are described here, you may also want to export data from Depthmap, and so a basic text file export is described in this tutorial.

The tutorial assumes that you can already produce visibility graph analyses and axial map analyses.

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

In this section, we load some data into Depthmap ready for analysis. Pointers on how to display Depthmap layers and how to import MIF/MID files from MapInfo are given.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Open file

We will start by opening a graph previously prepared which includes both a VGA map and an axial map. To open a saved file, select 'Open' from the 'File' menu or click the 'Open' icon on the main tool bar.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses

Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Open file

We will open the gallery.graph graph file, which contains both VGA and axial analysis of a gallery layout.

This file is available from the tutorials folder on the Depthmap website as one of the files included in gallery.zip.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses

Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

The graph file displays the visibility graph layer by default.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses

Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ● ● ● ●

Clicking on a second layer of a different graph type will promote the new layer to the topmost layer, and place the original layer behind it. You can hide the topmost layer by clicking on it again.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses

Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Import data layer

In addition to the graph information, we will import MapInfo data from a pair of MIF and MID files.

Use 'Import' from the 'Layer' menu, or click the 'Import' tool from the main tool bar, to import the files.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses

Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Change the import file type to 'mif' using the drop down menu.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses

Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Import data layer

We will import the pair of files gallery.mif and gallery.mid. These files are available from the tutorials folder on the Depthmap website as two of the files included in gallery.zip. Note that *both* files need to be in the same folder, even though we open them by selecting gallery.mif.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses

Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Import data layer

We will use the polygons in these files for a basis to enter some dummy observation data.

However, note that you do not need to use MapInfo to create them. The polygons in gallery.mif and gallery.mid were drawn in Depthmap. See the Convex Space Analysis tutorial for information about how to draw your own polygon data.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses

Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

You might import observation data from other software — for example, from MapInfo — but it is also fairly easy to enter observation data into Depthmap directly.

For the purposes of this section, I will assume that we have *room through movement* data. That is, the number of people passing into and out of a room during a period of time. We will mark the through movement on each room.

Note that typically, in space syntax analysis, researchers will be entering gate counts rather than through movement. That is, the number of pedestrians crossing a notional line across a pavement, door threshold or sidewalk.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

To begin we need a column into which to enter the data. With the data layer uppermost, click on 'Add Column' from the main tool bar, or choose 'Add Column' from the 'Attributes' menu.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

A new column, called <new attribute> is added, with no values inserted.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ● ● ● ●

First, let us change the name of the column: either right-click on the column name in the sidebar, or choose 'Rename Column' from the 'Attributes' menu.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Type in the name for your new column. Note that your version of gallery.mif and gallery.mid already contain the dummy observation data that we will enter here in a column called Dummy_Observations.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Now that we have a new column, let us open a table or spreadsheet view of the map in order to enter the observation data. From the 'Window' menu, select 'Table'.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲ロト ▲母 ト ▲目 ト ▲目 ト 一目 - のへぐ

Table window

UCL Depthmap - gallery.graph		_ O ×
Ele Edit Layer Attributes Tools	View Window Help	
I D 🚅 🔍 🔲 📑 📑 🛃	101 FR	
	1 1 1 1 1	
Visibility Graphs	🗮 gallery.graph:2	
Shana Granha	Def Number + Observati -	
All ine Man	Rei Nonder	
Not Editable	59 * -1	
Bef Number	57	
- E Connectivitu	56 -1	
E Entrony	55 -1	
- E Harmonic Mean Depth	54 -1	
Integration [HH]	53 -1	
- E Integration [Pavalue]	52 -1	
E Integration [Tek]	51 -1	
- E Intensity	50 -1	
- E Line Length	49 -1	
- E Mean Denth	48 -1	
E> Node Count	47 -1	
Eelativised Entropy	46 -1	
- Enwest-Line Map (Subsets)	45 -1	
Eewest-Line Map (Minimal)	-1	
B- Data Lavers	42 -1	
e-🖉 nallerv	41 -1	
Editable Off	40 -1	
Bef Number	39 -1	
Observations	38 -1	
B ⊡ Drawing Layers	37 -1	<u> </u>
Ready	60 4.54922 × 2.99168 1.4	16101, 7.75025

Note that the table shows that every row in the 'Observation' column is set to -1, which represents 'No Value' in Depthmap. The ordering is also by 'Observation', and as all the values are the same, no particular order is shown. Let us order by 'Ref Number' instead. Click on the 'Ref Number' column header.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

UCL Depthmap - gallery.graph		
Ele Edit Layer Attributes Tools	View Window Help	
	l fet na	
	100 00	
How Wisibility Graphs	🗖 anthony anaphy2	
Point Map	- ganery.graphiz	
B G Shape Graphs	Ref Number 7 Observations	
B P All-Line Map	-1	
Not Editable		
Her Number		
Connectivity		
Entropy		
Harmonic Mean Depth		
Integration (HH)	7 -1	
	8 -1	
	9 -1	
	10 -1	
	-1	
	12 -1	
Node Count Onlational Enterna	13 -1	
Electropy	14 -1	
Fewest-Line Map (Subsets)	15 -1	
Pewest-Line Map (Minimal)	16 -1	
Enter gallay	10 -1	
Pat Number	20 -1	
Descriptions	21 -1	
Drawing Lawre	22 -1	-
er gal prowing cayers		
Ready	60 4.54922 × 2.99168 1.46101, 7.	75025 //.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

UCL Depthmap - gallery.graph		
File Edit Layer Attributes Tools	View Window Help	
UCL Depthmone - oblery-workh File Edit Lover Atthocks Tools File Edit Lover Attor File Ed	Wey Window Help View State Poly State Poly State Poly State Poly State Poly Table Table State Poly Colour Range -1 State Poly Colour Range -1 State Poly Colour Range -1 State Poly Image Interpret Poly -1 State Poly Image Interpret Poly -1 State Poly Image Interpret Poly -1 -1 Image Interequictup -1 -1	
Editable Off	19 -1	
😥 Ref Number	-1	
H→G> Ubservations H→G Drawing Layers		-
Arrange windows as non-overlapping tile	15 60 4.54922 × 2.99168 1.46101, 7.	75025 //

We can view both the map window and the table window at the same time by selecting 'Tile' from the 'Window' menu.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Table window

You may want to display Depthmap full screen in order to have a little more room.

I will recentre the map window view by first clicking on the map window title bar to select it, and then clicking on the recentre button.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Table window

Note that if you select a shape by clicking on it in the map window, the equivalent row in the table window is shown with a tick next to it. Equally, if you select a row in the table window by clicking on the tick box for the row, it is highlighted in the map window.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

UCL Depthmap - gallery.graph		_ 🗆 🗙
Ele Edit Layer Attributes Tools	View Window Help	
D 🖻 😘 🖬 📑 🖻 🖻	En En	
🖶 🎇 Visibility Graphs 📃	📰 gallery.graph:2	-OX
😑 🛃 Point Map	Ref Number 7 Observations	_
Not Editable		
B Her Number	1 5 -1	
- G Connectivity	2 -1	
Boint First Moment	3 -1	
- E Point Second Mome		
Visual Entrony	-1	
Visual Integration [H	7 -1	
Visual Integration [P	8 -1	
	9 -1	-1
🖙 Visual Mean Depth		
⊂> Visual Node Count	gallery.graph:1	
⊂> Visual Relativised Er	[] (] (] (] (] (] (] (] (] (]	
😑 🛗 Shape Graphs		
All-Line Map		
Fewest-Line Map (Subse		
Pewest-Line Map (Minim		
E gallety		
Bef Number		
- C Observations -		
Ready	60 4.54922 × 2.99168 1.52029, 7.	22917

In order to enter a value for an observation, click on the value you want to change.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

・ロット ●日マ ・山マ ・山マ ・

UCL Depthmap - gallery.graph		-OX
Ele Edit Layer Attributes Tools	View Window Help	
] D 🚅 🧏 🖬 📑 🛒 🖻		
🖶 🎇 Visibility Graphs 📃	📰 gallery.graph:2	- O ×
🖻 🛃 Point Map	Ref Number 7 Observations	_
Not Editable	248	
Bet Number	1 1	
Agent Lounts	2 -1	
Diat First Manual	3 -1	
Point First Moment	4 -1	
Wave Entropy	5 -1	
Visual Integration III		
Visual Integration (P.		
Visual Integration IT		
Visual Mean Depth	E	
Visual Node Count	Pallery.graph:1	- 🗆 🗵
Visual Relativised Er	NOG. BASSING.	
🚊 📆 Shape Graphs		
Fewest-Line Map (Minim		
😑 🔜 Data Layers		
😑 🥩 gallery		
Editable Off		
🕞 Hef Number		
Ubservations		
Ready	60 4.54922 × 2.99168 0.415983, 7.6	5081 //

Then type in the value for the row. For example, if 248 people moved through this room in an hour, you might type in '248'.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Entering data

UCL Depthmap - gallery.graph		
Ele Edit Layer Attributes Tools	View Window Help	
] D 🖻 😼 🖬 📑 🖻 🖻		
Image: Second	End callery or optic2 I Ref Number Observations 0 248 1 1 2 -1 5 -1 6 -1 7 -1 8 -1 9 -1 9 -1 9 -1 9 -1 9 -1 9 -1 9 -1 9 -1 9 -1 9 -1	
⇔ Visual Integration [T ⇔ Visual Mean Depth	-1	-
⊂> Visual Node Count ⊂> Visual Relativised Er	<mark>P²gallery.graph:</mark> 尾欧 & ↓ ■ 例 × % \ × 噢 • 灶 麗 品 ×	1×
Shape Graphs Addition Map Fewest-Line Map (Subsc Fewest-Line Map (Mirim Data Layers Gatabae Off Fewest-Line Map (Mirim Data Layers Coltable Off Fer Number Coltable Off Coltable O		
Ready	60 4.54922 × 2.99168 1.82147, 7.71105	

To finish entering the value, press the Return key. Notice that as soon as you press Return, the cursor moves to the next row down, and the next room is highlighted in the map view.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

UCL Depthmap - gallery.graph - 🗆 × Ele Edit Layer Attributes Tools View Window Help 0 🖻 😘 🖬 📑 🖻 🖬 🕌 🚟 😑 😽 Visibility Granhs gallery.graph:2 _ 🗆 🗵 🗄 🥔 Point Map Ref Number Observations . Not Editable 248 Ref Number 146 ⇒ Agent Counts 10 Connectivity 82 Point First Moment 1147 Point Second Mome 15 -1 Visual Entropy 16 -1 ⇒ Visual Integration IH -1 Visual Integration (P) 8 -1 Visual Integration [T] 9 C Visual Mean Depth 🚰 gallery.graph:1 - 0 × Visual Node Count Visual Relativised Er ► (*) ● ■ ■ > 👷 • 🎁 🖹 🔒 • B T Shape Graphs Al-Line Man Fewest-Line Map (Subse Fewest-Line Map (Minim) B Data Layers 6 🥔 gallery C Editable Off 😴 Ref Number Dbservations 4 Ready 60 4.54922 x 2.99168 -0.70840, 7.7512

Continue to enter the observation values for each room in the plan.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● のへで

UCL Depthmap - gallery.graph - 101 × 1 Elle Edit Layer Attributes Tools View Window Help 🗅 🖨 😘 🖬 📑 🖻 🖬 👹 🖼 🗄 🥔 Point Map 📕 gallery.graph:2 - U X X Not Editable Ref Number Observations Ref Number 10 248 Close Agent Counts 146 Connectivity 10 C Point First Moment 3 82 Point Second Mome 4 114 Visual Entropy ls 234 Visual Integration IH 16 178 Visual Integration [P] 2595 Visual Integration [T] 8 82 1074 Visual Mean Depth **]**9 Visual Node Count 🚰 gallery.graph:1 - 🗆 × Visual Relativised Er B T Shape Graphs R (C) Q + H () - () - () -🙁 • 🎽 🗏 🎧 • All-Line Map Fewest-Line Map (Subse Eewest-Line Map (Minim B Data Layers i 🥔 oallerv C Editable Off Ref Number Observations B Drawing Layers 4 Ready 4.54922 × 2.99168 2.56437, 7.67089

Once the data are entered, the table window can be closed.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ● ● ● ●

For now we will also hide the observation layer, by clicking on the 'gallery' layer title in the side bar.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲口> ▲母> ▲目> ▲目> 三日 めんぐ

Summary statistics

You can obtain summary statistics about a column by right clicking on the column name in the side bar, and then selecting 'Properties' from the menu. Alternatively, you can select 'Column Properties' from the 'Attributes' menu.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

The summary statistics include maximum, minimum, average (mean) and standard deviation of the values, as well as a count of the number of points, lines or shapes in the system.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

You can compare summary statistics for a range of values against all the values in the system by first selecting the range (or single point) and then choosing 'Properties'.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

In addition to the per column summary statistics, you can get a briefer set of statistics for all the attributes that have been calculated by choosing 'Attribute Summary' from the 'View' menu.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Image: Test Layer Athebase Total View Window Hep Image: Test Layer	LCL Depthmap - [gallery.graph]				
Image: Constraint of the state of the s	🌮 File Edit Layer Attributes Tools View Window Help				_ 8 ×
■ Mathylograph ■ ■ > <					
Point Mo Attribute Summary X	😑 🍇 Visibility Graphs 🛛 🗼 🖑 🔍 + 🏢 🖉 -	8 N - 1 👾 - 12			
Not Edit Minimum Average Maximum - Grane Correctivity 34 623.819 2494 - Grane Pain First Moment 2.79408 44.01.02 24.40.82 - Grane Pain First Moment 0.298 44.01.02 24.40.82 - Grane Visual Firo 1.4944.41 1.6861.82 2.1986 - Grane 0.228 4.437.279 0.4944.92 0.6861.82 2.1986 - Grane 0.228.18 0.62311.9 0.6881.42 0.197.52 0.197.52 - Grane 0.228.18 0.62311.9 0.6891.42 0.6891.42 0.197.52 - Grane 0.228.18 0.62311.9 0.6891.42 0.6891.42 0.6891.42 0.6891.42 - Grane 0.4891.9 0.64541.1 0.64891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.6891.42 0.689	😑 🛃 Point Map 🛛 Attribute Summary			×	
→ C Fel Hur Althous Minimum Average Misimum → C Correctivity 34 623.019 2441 → C Port Fir Port First Moment 2.79408 440.102 2440.82 → C Ports Ports Ports 7.9408 440.102 2440.82 → C Ports Ports Ports 7.9408 440.102 2440.82 → Visual Fi Ports Ports 7.9408 440.102 2440.82 → Visual Fi Ports 7.9408 4.3217 0.752.27 7.9408 → Visual File Ports 7.953.01 9.9772.2 7.9408 9.9772.2 √visual Frequencin Field 0.43433 0.4541 0.48074 0.48074 → C Visual Frequencin Field 2.8593 3.12403 5.3327 → C Visual Frequencin Field 2.8593 3.12403 5.32710 → C Visual Frequencin Entropy 2.19503 2.47695 3.22102 → Dais Layses Dais Lay	X Not Edit				
→ C Connec Connec 244 → C Point Fit Pan Fitst Moment 27940 440102 → C Point Fit Pan Fitst Moment 0.256 447,279 → C Visual Fit Visual Fit 0.4661 2.3196 → Visual Fit 0.4601 2.3494 1.6661 → Visual Fit 0.4891 0.32534 3.6861 → Visual Fit 0.4891 0.4893 0.4891 → Visual Fit 0.4893 0.4891 0.48914 → Visual Fit 0.4893 0.48914 0.48914 → Visual Fit 0.48913 0.48914 0.48914 → Visual Fit 0.48913 0.48914 0.48914 → Visual Fit 0.48913 0.48914 0.48914 → Visual Fit 0.48914 0.48914 0.48914 → Visual Fit 0.48914 0.48914 0.48914 → O Visual Fit 0.48914 0.48914 0.48914 → O Mata Lavets 7.7244 1.7244 1.7244 → D Stateget OK 0.4981 0.48914	Ref Nur Attribute	Minimum	Average	Maximum	
	Connectivity	34	823.819	2494	
	Point Fir Point First Moment	2.79408	440.102	2440.82	
		0.296	447.279	4755.27	
→ Visual Internation Failan 235555 235510 905059 → Visual Internation Failan 0 235510 905059 → - Visual Internation Failan 0 235510 905059 → - Visual Internation Failan 0 235510 905059 → - Visual Internation Failan 0 225939 9352611 905074 → - Visual Internation Failan 0 225939 312603 53337 → - Visual Internation Failan 0 226999 312603 53337 → - Visual Internation Ecurit 17244 17244 17244 → - Visual Relationed Entropy 2.08503 2.47895 3.22102 → Allationed Entropy 2.08503 2.47895 3.22102 → Distance Entropy 0K 0K 0K		1.45944	1.86861	2.31966	
C Visualin (Wala Megalaon (Visualing) (Visual Megalaon (Visualing) (Visual Megalaon (Visualing)	Visual In Visual Integration (HH)	2,66394	5.66814	9.05349	
C Vaulin Vaulin Vauline Argen 225896 312603 530527 C Vaulin Vauli Hoo Count 77244 17244 C Vaulin Vauli Relatived Entropy 206503 247565 322102 C Vaulin Relatived Entropy 206503 247565 322102 Altite Mar Forwest Line Data Layes OK	Visual Integration (P-value)	0.232186	0.492919	0.78732	
	Visual In Visual Mean Denth	2.26909	3 1 25 0 3	5 30337	
C Visual N Visual Relativised Entropy 2.08503 2.47685 3.22102 C Visual Relativised Entropy 2.08503 2.47685 3.22102 Alter Nar Alter Nar Alter Nar Daturg Layes OK	Visual M Visual Node Count	17244	17244	17244	
C Vau Pl Stape Gapta FreekLine Data Lyper Data Lyper Data Lyper Data Lyper Data Lyper Data Lyper		2.08503	2,47685	3.22102	
Although and a layers Drawing Layers	⊂> Visual R				
	🗄 🖽 Shape Graphs				
Forward Line Forward Line Forward Line Dawlayes Dawling Layers	Al-Line Mac				
De Deb Leger Deb Leg	- Fewest-Line				
Data Layes Data Layes OK O	- Fewest-Line				
	e 🛄 Data Lavers				
	- allerv			OK	
	B- C Drawing Layers			UK	
				1 1	- 1 i 🖶 👘
	I [] ▶]				
17244 & 54922 v 2 99168 1 50785 7 78192 /	Ready		17244	4 54922 y 2 99168	1 50785 7 78132

If you double click on any attribute in the summary table, then it will take you to the column properties dialog box for that column.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

・ロト ・ 日下・ ・ 田下・ ・ 日下・ く 日下

In this section, we will cover the investigation of data through scatter plots. We will compare attributes with each other, and across maps.

In order to compare across maps, we will need to introduce the 'Push Values to Layer' feature, which copies attributes from one layer to another.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

You can open a scatter plot window by selecting 'Scatter Plot' from the 'Window' menu.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The default is to show the currently displayed attribute on both the x and y axes.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲口> ▲母> ▲目> ▲目> 三日 めんぐ

We can change the axes by using the drop down menus at the top of the screen.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲口> ▲母> ▲目> ▲目> 三日 めんぐ

Simple scatter plots

For example, this scatter plot shows the Visual Integration as a function of the Connectivity.

Tip: you can copy the screen using Ctrl-C or by selecting 'Copy Screen' from the 'Edit' menu. The screen shot, which is in vector graphics (which are smooth when printed), can then be pasted into your favourite word-processing or presentation software.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

If you tile the windows, using 'Tile' from the 'Window' menu, and then select on the scatter plot window, the range will be highlighted on the map window as well.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Simple scatter plots

The 'Toggle Colour' button on the scatter-plot window tool bar turns off the colour scale, which you may find useful for preparing printed material. Note that the highlight colour for the selection changes to red, so that it is easily visible against white data points or a white background.

The remaining buttons will be described in the section on comparing data from different maps.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Pushing values to another layer

Simple scatter plots are all very well for theoretical comparisons of measures, but they cannot easily be used to compare VGA maps to axial maps, or VGA or axial values to observation data.

In order to make comparable data, we can *push values* from one layer to another layer, either by clicking the 'Push Values' button on the main tool bar, or by selecting 'Push Values to Layer' from the 'Attributes' menu.

Alasdair Turner

Depthmap Data

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Push values options

For example, to compare VGA data to observation data, we can collate VGA data by room.

Selecting 'Push Values' when we are viewing the VGA layer automatically selects the 'gallery' layer as the default to which to push the data.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Push values options

A drop down menu gives us various methods for how the data will be pushed from the VGA layer to the data layer.

Remember that the VGA layer contains points, and the data layer contains polygons representing rooms.

When transferring the data from the VGA layer, many points will intersect each room. We might want to take the maximum point value, the minimum point value, or the average for the whole room.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Push values options

We may also want to know exactly how many points were used to obtain the value transferred to the gallery rooms layer. The 'Record object intersection count' options will create an extra column in the gallery rooms layer to say how many points were used to form the value transferred.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Push values restrictions

Note that the drop down menu for where to push data does *not* allow us to push data to the axial line layer.

This is because VGA data are recorded for points, and axial line data are recorded for lines. Unless lines are drawn exactly over the VGA grid there will be no overlap of the shapes in the VGA layer and the axial layer.

Therefore, in order to compare the two, a proxy layer containing polygons, such as the gallery rooms layer, is required.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Push values to layer

If we click 'OK', and switch to the gallery layer view, by clicking on 'gallery' in the side bar, we see that there are two new columns: 'Visual Integration [HH]' and 'Object Count'.

'Visual Integration [HH]' is, according to the option we chose, the maximum visual integration found within each room polygon. 'Object Count' is the number of points that intersect each room polygon.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Cross map comparisons

Now that we have data from both observations and VGA in the same layer, we can compare them using the scatter plot window, by selecting 'Scatter Plot' from the 'Window' menu.

There seems to be a positive trend, if not very convincing, but how do we quantify that trend?

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Cross map comparisons

The buttons on the scatter-plot window tool bar give various options for the scatter plot.

- > The 'Trend Line' button shows a best fit line through the data
- ► The y = x button shows the equation of the best fit line in the form y = mx + c
- The R^2 button shows the R^2 correlation coefficient for the data.

In this case $R^2 = 0.26$ and y = 214x - 970.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Rescaling an axis

One thing to not about these data is that although the integration data are distributed roughly evenly, the observation data are not. This is a concern for linear correlation, which assumes variables are evenly distributed.

We would be best to convert the observation data to a logarithmic scale. To do this, right click on the 'Observations' attribute in the side bar, and select 'Edit'.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Check that the dialog title bar reads 'Replace values for Observations', and not 'Visual Integration [HH]'.

Now double click on 'Observations' in the right hand window. The text value(''Observations'') will automatically appear in the entry box.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Rescaling an axis

Next alter the entry box text so it reads

ln(value(''Observations'')), and click 'OK'.

This means: take the natural logarithm of the observation values, and replace them in the observation column.

It might have been best to create a new column to store these values rather than overwriting the originals!

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Rescaling an axis

Now both scales are distributed roughly normally, a comparison of the two is possible.

The correlation coefficient R^2 is 0.40.

That is, there is some correspondence between the two, but not striking. This is expected in space syntax theory: a much better measurement of movement is provided by agent-based analysis, not visual integration. For details, see 'To move through space: Lines of vision and movement'

Depthmap Data

Alasdair Turner

Preparing VGA and axial analyses Importing a MIF/MID data

Adding a column Using the table window Entering data

Simple scatter plots Pushing values to layers Cross map comparisons

э

Pushing data the other way

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

Note that we do not have to just push data from the VGA layer or axial layer to the data layer. We might, for example, push our data layer to the axial layer.

Select 'Push Values to Layer', either from the main tool bar or the 'Attributes' menu, while the 'gallery' layer is uppermost.

Pushing data the other way

I shall push the 'Observations' values to the 'Fewest-Line Map (Minimal)' axial map.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲口> ▲母> ▲目> ▲目> 三日 めんぐ

Pushing data the other way

Now I can compare 'Observations' to my axial integration. $R^2 = 0.20$, which goes to show that axial line integration within a building is not well related to pedestrian movement¹.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Of course, there are professional statistical analysis packages which can do far more with the data than Depthmap. To get the data into these programs, Depthmap includes an 'Export' option on the 'Layer' menu.

This will export the data from the currently topmost displayed layer: in the case shown, the gallery room layer data.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

The default save option, a .txt file, produces a tab-delimited text file.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● のへで

撞 Untitled 1 - Ope	nOffice.org Calc					_ 🗆 🗵
Eile Edit View I	nsert Format <u>T</u> ools	Data Window	Help			😓 ×
🗟 • 🧭 🔳 🤇	Open	🥅 .		~	<u>? ×</u>	III 🔍 I 😲 🔒
Arial	Look in:	🔁 data_analys	sis	- 🗈 💣 💷 -		ð • 📥 • 🖕
A1	History Desktop My Documents My Computer	galery_galer	Type: Text Document Size: 2.10 KB			
12 13 14	My Network P	File name: Files of type:	gallery_gallery.txt Text CSV (*.csv;*.txt;*.xls)	•	Open Cancel	
15		Varian		-		
16		version.				
1/			Read-only			
10						•
H I F F Shee	t1/Sheet2/Sheet3					•
Sheet 1/3	Default		100% STD		Sum=0	

The text file can be imported easily into most data analysis and spreadsheet packages.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

撞 Unt	itled1 - 0	OpenOffice.org	g Calc					
<u>Ele</u>	dit <u>V</u> iew	Insert Form	nat Tools Data	Window Help				, ×
	- 63 🛯	Text Import -	- [gallery_galle	ry.txt]			×	
:	Autol	Import					OK N	A v
: •••	Perial	Ch <u>a</u> racter s	set 🚺	estern Europe (Window	is-1252/WinLatin 1)	-		<u> </u>
A1		From row	1				Cancel	
	A	Separator opt	tions				Help	1 ^
1	_	C Elved w	idth					
2		- Even w	lucii					
3		Separat	ed by					
4		🔽 Tab		Comma	C Other			
5		 	inden					
6		i bign	CORT	i ogace			_	
7		Merç	ge <u>d</u> elimiters		Te <u>≾</u> t delimiter		•	
8								
9		Fields						
10		Column typ	e	v				
11		Standa	ard Standard	Standard	Standard	Standard A		
12		1 Ref	cx	cy	Object Count	Observations		
13		2 0	1.18	5.96	-1	5.513429	-	
14		3 1	1.18	5.28	-1	4.983607		
15		4 2	1.48	5	-1	2.302585		
16		5 3	1.52	5.2	-1	4.406719		
17		64	1.76	5.2	-1	4.736198	-1	
18		1	7 08	5.2	-1	\$ 455371	-	
19	_							•
R 4	E E SF	neet1 / Sheet2	/ Sheet3 /	1141				· •

Open Office (shown here) and Excel detect the correct options to import by default.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ シタぐ

撞 ga	llery_	gallery	r - Ope	nOffice.org Calo						_	
Ele	Edit y	<u>/iew I</u>	nsert	Format Tools	<u>D</u> ata <u>W</u> indow <u>B</u>	telp					×
1	• 🧭	1	a 🛃	🖣 🗟 🖴 🕅	1 🍄 📖 🐰	ि 🛱 • 🎸 । 🦘 • 👌	👶 🛔	🖡 🤾 I 🥭 🖌 I 🕯	MA 🧭 🖻 🗉	I 🔍 🥐	
5	Aria	I		• 10	• B I		J %	\$% 53 69 €≣	ŧ≡ 🗖 • 🖇	•• 📥 •	
A1			•	$f(x) \Sigma = F$	Ref						
	A	В	C	D	E	F	G	н	I)	A
1	Ref	CX	сү	Object Count	Observations	Visual Integration [HH]					
2	0	1.18	5.96	798	5.51	8.91					
3	1	1.18	5.28	531	4.98	6.41					
4	2	1.48	- 5	68	2.3	5.34					
5	3	1.52	5.2	39	4.41	5.28					
6	4	1.76	5.2	377	4.74	6.14					
7	5	2.08	5.2	309	5.46	8					
8	6	2.4	5.2	356	5.18	6.31					
9	7	3.06	5.3	498	7.86	8.33					
10	8	2.76	5.02	160	4.41	5.78	1				
11	9	3.04	5.02	131	6.98	7.03					
12	10	3.36	5.02	170	4.32	4.74					
13	11	3.04	4.86	35	6.94	6.79	I				
14	12	3.06	5.56	147	7.94	7.55					
15	13	3.06	5.98	570	7.81	8.97					
16	14	3.06	6.38	125	6.64	6.92					
17	15	3.38	6.4	42	4.11	5.37					
18	16	2.48	6.32	269	5.58	4.49	1				_
1,0	17	3.06	F 68	7.25	6 57	9 N4					
H 4	× ×	Shee	<u>t1</u> /		14						
Shee	±1/1			Default	1	00% STD			Sum=0		

For polygonal data, the file contains columns cx and cy which are the coordinates of the centroid of the polygon. For point data, the point location x, y is exported, and for line data, the end points x1,y1 and x2,y2 are used.

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Depthmap Data

Alasdair Turner

Introduction

Getting started

Preparing VGA and axial analyses Importing a MIF/MID data file

Entering observation data

Adding a column Using the table window Entering data

Summary statistics

Scatter plots

Simple scatter plots Pushing values to layers Cross map comparisons

Exporting data

Conclusion

This tutorial has covered entering observation (or other) data into existing Depthmap geometry, displaying summary statistics for columns, showing scatter plots and correlation coefficients, as well as exporting data to spreadsheets and data analysis packages. In doing so, it has introduced the key concept within Depthmap of pushing values between layers.

Note that the tutorial has not covered the principles of statistical analysis, and the results shown in the tutorial are for guidance purposes only.