Shortest Cycle

Copyright (C) 2007 Alasdair Turner

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
push list = []
pop_list = []
live paths = []
setmark([-1,0])
depth =1
path_index = 0
for i in connections():
pop list.append([path_index,i])
live paths.append(1l)
i.setmark([path_index,depth])
path_index = path _index + 1
if path_index < 2:
return -1 # no cycle possible
live path _count = path_ index
while live_path_count > 1:
curs = pop_list.pop()
path_index = curs[0]
this _node = curs[l]
live paths[path_index] = live paths[path index] — 1
for i in this node.connections():
if i.mark() is none:
i.setmark([path_index,depth+1l])
push list.append([path_index,i])
live paths[path_index] = live paths[path index] + 1
elif i.mark()[0] != path _index and i.mark()[0] != -1:
found a cycle!
return i.mark()[1l] + this node.mark()[1l] + 1
if live paths[path_index] == O0:
live path_count = live path count — 1
if len(pop_list) == O0:
depth = depth + 1
pop_list = push_ list
push _list = []
return -1 # no cycle found

HFHRFHRHBHRHRHHFHFHR

